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A more accurate, neural-network-based characterization of the full-scale UH-60A maximum,

vibratory pitch link loads (MXVPLL) was obtained. The MXVPLL data were taken from the

NASA/Army UH-60A Airloads Program flight test database. This database includes data from

level flights, and both simple and "complex" maneuvers. In the present context, a complex
maneuver was defined as one which involved simultaneous, non-zero aircraft angle-of-bank

(associated with turns) and aircraft pitch-rate (associated with a pull-up or a push-over). The

present approach combines physical insight followed by the neural networks application. Since

existing load factors do not represent the above-defined complex maneuver, a new, combined

load factor ("present-load-factor") was introduced. A back-propagation type of neural network

with five inputs and one output was used to characterize the UH-60A MXVPLL. The neural

network inputs were as follows: rotor advance ratio, aircraft gross weight, rotor RPM, air

density ratio, and the present-load-factor. The neural network output was the maximum,

vibratory pitch link load (MXVPLL). It was shown that a more accurate characterization of the

full-scale flight test pitch link loads can be obtained by combining physical insight with a

neural-network-based approach.

Introduction

Helicopter rotor blade pitch link loads undergo large

changes in magnitude due to varying flight conditions

that range from the relatively benign level flight
conditions to the more severe maneuver conditions

(Refs. 1 and 2). Also, a typical rotor blade pitch link

operates in a highly dynamic environment. Thus, the

test pitch link load has associated with it a greater

degree of uncertainty (Ref. 3). Analytical prediction

of pitch link loads is thus difficult (Refs. 1 and 2), and
methods that are more accurate than those currently

available are highly desirable.

In Ref. 4, neural networks were used to model SH-60B

pitch link loads. Apparently, no attempt was made in
Ref. 4 to combine physical insight with the

application of neural networks.

The present study attempts, first, to obtain physical

insight, and second, to efficiently apply neural
networks in order to characterize (model) helicopter

rotor blade pitch link loads. The present neural-
network-based approach accurately models rotorcraft

pitch link loads and includes level flight and maneuver

conditions data. The NASA/Army UH-60A Airloads

Program flight test database (Refs. 5 and 6) was used

in the present study. The present study uses the

experience gained from the earlier neural-network-based
studies conducted in the Army/NASA Rotorcraft
Division at NASA Ames (Refs. 7 to 12). Neural

networks have been successfully applied to rotorcraft

aeromechanics problems (Ref. 7). These

aeromechanics problems have included first,
identification and control of rotor noise and hub loads

(Refs. 8 to 11), and second, validation of tilt-rotor

performance test data (Ref. 12). The test data
validation study included the following: data

representation, data quality assessment, and outdoor
hover data wind-corrections formulation and

implementation (Ref. 12). Overall, neural networks
were found to be very useful in solving aeromechanics

problems (Ref. 7).

References 7 and 12 showed that tilt-rotor wind tunnel

test pitch link loads can be accurately modeled using
the back-propagation type of neural network. In the

preceding application of neural networks, the neural

S. Kottapalli. NASAAmes Research Center, 11/6t98



network inputs were the rotor shaft angle, the rotor
advance ratio, and the rotor thrust coefficient. The

neural network output was the oscillatory pitch link
load.

References 7 and 12 also considered wind corrections

procedures for correcting outdoor hover tilt-rotor
performance test data. It was found that a neural-

network-based procedure, based on a well-trained neural

network, captured physical trends in the test data that

had been missed by the existing, momentum-theory-
based method.

Present Physics-Based

Neural Network Approach

In the present approach, emphasis was placed on

understanding the basic physics underlying helicopter

rotor pitch link load variations during level flight and

maneuver conditions. Subsequent application of
neural networks used this fundamental knowledge.

Pitch link load variations with several parameters were

plotted so as to determine the important parameters

that affected the pitch link load significantly (this is
further discussed in the Results section). A

"determining-parameter" list with six operating-

condition and aircraft-state parameters was used. The
six parameters were as follows: rotor advance ratio,

aircraft gross weight, rotor RPM, density ratio, aircraft

angle-of-bank (roll attitude), and the aircraft pitch-rate.

Present-Load-Factor

Using the basic physics of maneuvering aircraft, the

present study introduced a new, single load factor that

characterizes above-defined complex maneuvers. This
load factor is discussed as follows. References 13 and

14 discuss simple maneuvers in which the aircraft is

either turning or pitching. For the complex UH-60A

maneuvers under consideration (simultaneous non-zero

angle-of-bank and pitch-rate), the following new load

factor was derived and used in the present study:

Present-Load-Factor =

[ 1 / cosine(angle-of-bank) ] *

[ 1 + (pitch-rate * airspeed / g) ]

(1)

where "g" is the acceleration due to gravity. Since

both turning and pitch-rate effects are included in the
present-load-factor, the number of "determining-

parameters" was presently reduced to five from six.

The calculation of the present-load-factor for a

particular complex UH-60A maneuver under

consideration involved special treatment for the

helicopter pitch-rate. First, the individual flight test

time-history of the pitch-rate was obtained using
TRENDS (Ref. 15) and manually examined. For

some maneuvers, the flight test pitch-rates varied with

time. In the present study, a maneuver-specific

representative-pitch-rate (based on the above flight test

time-history) was calculated. Specifically, this

representative-pitch-rate was estimated as follows: i)

conducting a "reality check" on the pitch-rate sign and
magnitude that were associated with the specific

maneuver, and ii) ensuring consistency with the UH-

60A flight test pilot's comments regarding the

representative g-level encountered during the maneuver.

Neural Network Details

The five neural network inputs were as follows:
advance ratio, gross weight, rotor RPM, density ratio,

and the present-load-factor (Eq. 1). The neural network

output was the maximum, vibratory pitch link load,

MXVPLL. The presently-used back-propagation
neural network had the same architecture as that used

in the tilt-rotor performance application of neural

networks (Ref. 12). The present back-propagation
neural network architecture was referred to as "5-10-1."

Here, the 5 and 1 respectively refer to the number of

neural network inputs and the neural network output,

and 10 refers to the number of processing elements in

the neural network hidden layer.

Results

Neural Network Training Database

For present purposes, a portion of the complete UH-

60A Airloads Program database was used The present

neural network training database consisted only of

those data points for which the maximum, vibratory

test pitch link load MXVPLL > 1000 lb. This

selection procedure resulted in a neural network

training database consisting of approximately 80 data

points (which account for both level flight and

maneuver conditions, simple and complex). A lower

limit of 1000 lb was imposed on the pitch link load
for two reasons. First, data points with pitch link

loads < 1000 lb would not really provide additional

"information" of use in the training of the neural

network. Second, by excluding the data points with

maximum, vibratory pitch link load < 1000 lb, the
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neural network training database size became smaller.

A smaller neural network training database not only

facilitates the physical understanding of the maneuver-

pitch-link-load trends, but also makes it easier to train

the neural networks. Apparently, Ref. 4 did not

involve any such physics-based considerations.

any case, it has been shown using neural networks that

the quality of the present pitch link load test data is

acceptable. Also, it is believed that the present

physics-based approach using neural networks was able

to produce a more accurate characterization of the UH-

60A pitch link loads.

Present-Load-Factor Concluding Remarks

As an example of the type of functional dependencies

presently involved, Fig. 1, a two-vertical-axes plot,
shows the variations of the maximum, vibratory pitch

link load (MXVPLL) and the present-load-factor with

advance ratio. Figure 1 shows that the present

composite load factor, which includes both the angle-

of-bank and pitch-rate, has a high maximum value

associated with it ( = 4) as compared to a conventional
load factor.
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The present study showed that a physics-based

approach using neural networks was able to accurately

predict helicopter pitch link loads during both level

flight and complex maneuver conditions.
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Fig. 2 Pitch link load correlation using
neural networks
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Fig. 1 Present-load-factor and pitch link
load variations with advance ratio

Pitch Link Load Correlation

Figure 2 shows the correlation (scatter) plot from the

above multiple-input, single-output (MISO) 5-10-1

back-propagation neural network. This correlation
was considered to be very good. This is due to the fact

that during a forward flight test condition, the rotor

blade pitch links are subjected to high dynamic loading
which is often due to nonlinear aerodynamic blade

loading. The pitch link loads test data base would thus

be expected to have an inherently lower level of

repeatability. That is, the pitch link loads data base
would have a wider "uncertainty band" due to the pitch

links operating in an environment that is dynamic. In
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